Author | Michael Mitzenmacher | |

ISBN-10 | 0521835402 | |

Release | 2005-01-31 | |

Pages | 352 | |

Download Link | Click Here |

Randomization and probabilistic techniques play an important role in modern computer science, with applications ranging from combinatorial optimization and machine learning to communication networks and secure protocols.Assuming only an elementary background in discrete mathematics, this textbook is designed to accompany a one- or two-semester course for advanced undergraduates or beginning graduate students in computer science and applied mathematics. It gives an excellent introduction to the probabilistic techniques and paradigms used in the development of probabilistic algorithms and analyses, including random sampling, expectations, Markov's and Chevyshev's inequalities, Chernoff bounds, balls and bins models, the probabilistic method, Markov chains, MCMC, martingales, entropy, and other topics. |

Author | Michael Mitzenmacher | |

ISBN-10 | 9781107154889 | |

Release | 2017-06-30 | |

Pages | 488 | |

Download Link | Click Here |

Greatly expanded, this new edition requires only an elementary background in discrete mathematics and offers a comprehensive introduction to the role of randomization and probabilistic techniques in modern computer science. Newly added chapters and sections cover topics including normal distributions, sample complexity, VC dimension, Rademacher complexity, power laws and related distributions, cuckoo hashing, and the Lovasz Local Lemma. Material relevant to machine learning and big data analysis enables students to learn modern techniques and applications. Among the many new exercises and examples are programming-related exercises that provide students with excellent training in solving relevant problems. This book provides an indispensable teaching tool to accompany a one- or two-semester course for advanced undergraduate students in computer science and applied mathematics. |

Author | Janet Susan Milton | |

ISBN-10 | 0071005749 | |

Release | 1986 | |

Pages | 643 | |

Download Link | Click Here |

Probability and Statistics in the Engineering and Computing Sciences has been writing in one form or another for most of life. You can find so many inspiration from Probability and Statistics in the Engineering and Computing Sciences also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Probability and Statistics in the Engineering and Computing Sciences book for free. |

Author | Jane Horgan | |

ISBN-10 | 9781118165959 | |

Release | 2011-09-30 | |

Pages | 416 | |

Download Link | Click Here |

A Complete Introduction to probability AND its computer Science Applications USING R Probability with R serves as a comprehensive and introductory book on probability with an emphasis on computing-related applications. Real examples show how probability can be used in practical situations, and the freely available and downloadable statistical programming language R illustrates and clarifies the book's main principles. Promoting a simulation- and experimentation-driven methodology, this book highlights the relationship between probability and computing in five distinctive parts: The R Language presents the essentials of the R language, including key procedures for summarizing and building graphical displays of statistical data. Fundamentals of Probability provides the foundations of the basic concepts of probability and moves into applications in computing. Topical coverage includes conditional probability, Bayes' theorem, system reliability, and the development of the main laws and properties of probability. Discrete Distributions addresses discrete random variables and their density and distribution functions as well as the properties of expectation. The geometric, binomial, hypergeometric, and Poisson distributions are also discussed and used to develop sampling inspection schemes. Continuous Distributions introduces continuous variables by examining the waiting time between Poisson occurrences. The exponential distribution and its applications to reliability are investigated, and the Markov property is illustrated via simulation in R. The normal distribution is examined and applied to statistical process control. Tailing Off delves into the use of Markov and Chebyshev inequalities as tools for estimating tail probabilities with limited information on the random variable. Numerous exercises and projects are provided in each chapter, many of which require the use of R to perform routine calculations and conduct experiments with simulated data. The author directs readers to the appropriate Web-based resources for installing the R software package and also supplies the essential commands for working in the R workspace. A related Web site features an active appendix as well as a forum for readers to share findings, thoughts, and ideas. With its accessible and hands-on approach, Probability with R is an ideal book for a first course in probability at the upper-undergraduate and graduate levels for readers with a background in computer science, engineering, and the general sciences. It also serves as a valuable reference for computing professionals who would like to further understand the relevance of probability in their areas of practice. |

Author | Rajeev Motwani | |

ISBN-10 | 9781139643139 | |

Release | 1995-08-25 | |

Pages | ||

Download Link | Click Here |

For many applications a randomized algorithm is either the simplest algorithm available, or the fastest, or both. This tutorial presents the basic concepts in the design and analysis of randomized algorithms. The first part of the book presents tools from probability theory and probabilistic analysis that are recurrent in algorithmic applications. Algorithmic examples are given to illustrate the use of each tool in a concrete setting. In the second part of the book, each of the seven chapters focuses on one important area of application of randomized algorithms: data structures; geometric algorithms; graph algorithms; number theory; enumeration; parallel algorithms; and on-line algorithms. A comprehensive and representative selection of the algorithms in these areas is also given. This book should prove invaluable as a reference for researchers and professional programmers, as well as for students. |

Author | Mor Harchol-Balter | |

ISBN-10 | 9781107027503 | |

Release | 2013-02-18 | |

Pages | 548 | |

Download Link | Click Here |

Written with computer scientists and engineers in mind, this book brings queueing theory decisively back to computer science. |

Author | ||

ISBN-10 | UCAL:B5116386 | |

Release | 1986 | |

Pages | ||

Download Link | Click Here |

Probability and statistics in the engineering and computing sciences has been writing in one form or another for most of life. You can find so many inspiration from Probability and statistics in the engineering and computing sciences also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Probability and statistics in the engineering and computing sciences book for free. |

Author | Mary P Attenborough | |

ISBN-10 | 0080473407 | |

Release | 2003-06-30 | |

Pages | 576 | |

Download Link | Click Here |

Mathematics for Electrical Engineering and Computing embraces many applications of modern mathematics, such as Boolean Algebra and Sets and Functions, and also teaches both discrete and continuous systems - particularly vital for Digital Signal Processing (DSP). In addition, as most modern engineers are required to study software, material suitable for Software Engineering - set theory, predicate and prepositional calculus, language and graph theory - is fully integrated into the book. Excessive technical detail and language are avoided, recognising that the real requirement for practising engineers is the need to understand the applications of mathematics in everyday engineering contexts. Emphasis is given to an appreciation of the fundamental concepts behind the mathematics, for problem solving and undertaking critical analysis of results, whether using a calculator or a computer. The text is backed up by numerous exercises and worked examples throughout, firmly rooted in engineering practice, ensuring that all mathematical theory introduced is directly relevant to real-world engineering. The book includes introductions to advanced topics such as Fourier analysis, vector calculus and random processes, also making this a suitable introductory text for second year undergraduates of electrical, electronic and computer engineering, undertaking engineering mathematics courses. Dr Attenborough is a former Senior Lecturer in the School of Electrical, Electronic and Information Engineering at South Bank University. She is currently Technical Director of The Webbery - Internet development company, Co. Donegal, Ireland. Fundamental principles of mathematics introduced and applied in engineering practice, reinforced through over 300 examples directly relevant to real-world engineering |

Author | John A. Gubner | |

ISBN-10 | 9781139457170 | |

Release | 2006-06-01 | |

Pages | 639 | |

Download Link | Click Here |

The theory of probability is a powerful tool that helps electrical and computer engineers to explain, model, analyze, and design the technology they develop. The text begins at the advanced undergraduate level, assuming only a modest knowledge of probability, and progresses through more complex topics mastered at graduate level. The first five chapters cover the basics of probability and both discrete and continuous random variables. The later chapters have a more specialized coverage, including random vectors, Gaussian random vectors, random processes, Markov Chains, and convergence. Describing tools and results that are used extensively in the field, this is more than a textbook; it is also a reference for researchers working in communications, signal processing, and computer network traffic analysis. With over 300 worked examples, some 800 homework problems, and sections for exam preparation, this is an essential companion for advanced undergraduate and graduate students. Further resources for this title, including solutions (for Instructors only), are available online at www.cambridge.org/9780521864701. |

Author | James J. Buckley | |

ISBN-10 | 9783540331902 | |

Release | 2008-09-12 | |

Pages | 270 | |

Download Link | Click Here |

This book combines material from our previous books FP (Fuzzy Probabilities: New Approach and Applications,Physica-Verlag, 2003) and FS (Fuzzy Statistics, Springer, 2004), plus has about one third new results. From FP we have material on basic fuzzy probability, discrete (fuzzy Poisson,binomial) and continuous (uniform, normal, exponential) fuzzy random variables. From FS we included chapters on fuzzy estimation and fuzzy hypothesis testing related to means, variances, proportions, correlation and regression. New material includes fuzzy estimators for arrival and service rates, and the uniform distribution, with applications in fuzzy queuing theory. Also, new to this book, is three chapters on fuzzy maximum entropy (imprecise side conditions) estimators producing fuzzy distributions and crisp discrete/continuous distributions. Other new results are: (1) two chapters on fuzzy ANOVA (one-way and two-way); (2) random fuzzy numbers with applications to fuzzy Monte Carlo studies; and (3) a fuzzy nonparametric estimator for the median. |

Author | David Applebaum | |

ISBN-10 | 0521555280 | |

Release | 1996-07-13 | |

Pages | 212 | |

Download Link | Click Here |

This elementary introduction to probability theory and information theory provides a clear and systematic foundation to the subject; the author pays particular attention to the concept of probability via a highly simplified discussion of measures on Boolean algebras. He then applies the theoretical ideas to practical areas such as statistical inference, random walks, statistical mechanics, and communications modeling. Applebaum deals with topics including discrete and continuous random variables, entropy and mutual information, maximum entropy methods, the central limit theorem, and the coding and transmission of information. The author includes many examples and exercises that illustrate how the theory can be applied, e.g. to information technology. Solutions are available by email. This book is suitable as a textbook for beginning students in mathematics, statistics, or computer science who have some knowledge of basic calculus. |

Author | Edward R. Dougherty | |

ISBN-10 | UOM:39015019814915 | |

Release | 1990 | |

Pages | 800 | |

Download Link | Click Here |

Probability and statistics for the engineering computing and physical sciences has been writing in one form or another for most of life. You can find so many inspiration from Probability and statistics for the engineering computing and physical sciences also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Probability and statistics for the engineering computing and physical sciences book for free. |

Author | Mary P Attenborough | |

ISBN-10 | 0080473407 | |

Release | 2003-06-30 | |

Pages | 576 | |

Download Link | Click Here |

Mathematics for Electrical Engineering and Computing embraces many applications of modern mathematics, such as Boolean Algebra and Sets and Functions, and also teaches both discrete and continuous systems - particularly vital for Digital Signal Processing (DSP). In addition, as most modern engineers are required to study software, material suitable for Software Engineering - set theory, predicate and prepositional calculus, language and graph theory - is fully integrated into the book. Excessive technical detail and language are avoided, recognising that the real requirement for practising engineers is the need to understand the applications of mathematics in everyday engineering contexts. Emphasis is given to an appreciation of the fundamental concepts behind the mathematics, for problem solving and undertaking critical analysis of results, whether using a calculator or a computer. The text is backed up by numerous exercises and worked examples throughout, firmly rooted in engineering practice, ensuring that all mathematical theory introduced is directly relevant to real-world engineering. The book includes introductions to advanced topics such as Fourier analysis, vector calculus and random processes, also making this a suitable introductory text for second year undergraduates of electrical, electronic and computer engineering, undertaking engineering mathematics courses. Dr Attenborough is a former Senior Lecturer in the School of Electrical, Electronic and Information Engineering at South Bank University. She is currently Technical Director of The Webbery - Internet development company, Co. Donegal, Ireland. Fundamental principles of mathematics introduced and applied in engineering practice, reinforced through over 300 examples directly relevant to real-world engineering |

Author | Maria Brigida Ferraro | |

ISBN-10 | 9783319429724 | |

Release | 2016-08-30 | |

Pages | 535 | |

Download Link | Click Here |

This proceedings volume is a collection of peer reviewed papers presented at the 8th International Conference on Soft Methods in Probability and Statistics (SMPS 2016) held in Rome (Italy). The book is dedicated to Data science which aims at developing automated methods to analyze massive amounts of data and to extract knowledge from them. It shows how Data science employs various programming techniques and methods of data wrangling, data visualization, machine learning, probability and statistics. The soft methods proposed in this volume represent a collection of tools in these fields that can also be useful for data science. |

Author | James E. Gentle | |

ISBN-10 | 9780387216102 | |

Release | 2006-04-18 | |

Pages | 382 | |

Download Link | Click Here |

Monte Carlo simulation has become one of the most important tools in all fields of science. Simulation methodology relies on a good source of numbers that appear to be random. These "pseudorandom" numbers must pass statistical tests just as random samples would. Methods for producing pseudorandom numbers and transforming those numbers to simulate samples from various distributions are among the most important topics in statistical computing. This book surveys techniques of random number generation and the use of random numbers in Monte Carlo simulation. The book covers basic principles, as well as newer methods such as parallel random number generation, nonlinear congruential generators, quasi Monte Carlo methods, and Markov chain Monte Carlo. The best methods for generating random variates from the standard distributions are presented, but also general techniques useful in more complicated models and in novel settings are described. The emphasis throughout the book is on practical methods that work well in current computing environments. The book includes exercises and can be used as a test or supplementary text for various courses in modern statistics. It could serve as the primary test for a specialized course in statistical computing, or as a supplementary text for a course in computational statistics and other areas of modern statistics that rely on simulation. The book, which covers recent developments in the field, could also serve as a useful reference for practitioners. Although some familiarity with probability and statistics is assumed, the book is accessible to a broad audience. The second edition is approximately 50% longer than the first edition. It includes advances in methods for parallel random number generation, universal methods for generation of nonuniform variates, perfect sampling, and software for random number generation. |

Author | Michael Baron | |

ISBN-10 | 9781439875902 | |

Release | 2013-08-05 | |

Pages | 449 | |

Download Link | Click Here |

Student-Friendly Coverage of Probability, Statistical Methods, Simulation, and Modeling Tools Incorporating feedback from instructors and researchers who used the previous edition, Probability and Statistics for Computer Scientists, Second Edition helps students understand general methods of stochastic modeling, simulation, and data analysis; make optimal decisions under uncertainty; model and evaluate computer systems and networks; and prepare for advanced probability-based courses. Written in a lively style with simple language, this classroom-tested book can now be used in both one- and two-semester courses. New to the Second Edition Axiomatic introduction of probability Expanded coverage of statistical inference, including standard errors of estimates and their estimation, inference about variances, chi-square tests for independence and goodness of fit, nonparametric statistics, and bootstrap More exercises at the end of each chapter Additional MATLAB® codes, particularly new commands of the Statistics Toolbox In-Depth yet Accessible Treatment of Computer Science-Related Topics Starting with the fundamentals of probability, the text takes students through topics heavily featured in modern computer science, computer engineering, software engineering, and associated fields, such as computer simulations, Monte Carlo methods, stochastic processes, Markov chains, queuing theory, statistical inference, and regression. It also meets the requirements of the Accreditation Board for Engineering and Technology (ABET). Encourages Practical Implementation of Skills Using simple MATLAB commands (easily translatable to other computer languages), the book provides short programs for implementing the methods of probability and statistics as well as for visualizing randomness, the behavior of random variables and stochastic processes, convergence results, and Monte Carlo simulations. Preliminary knowledge of MATLAB is not required. Along with numerous computer science applications and worked examples, the text presents interesting facts and paradoxical statements. Each chapter concludes with a short summary and many exercises. |

Author | Kishor S. Trivedi | |

ISBN-10 | 9780471460817 | |

Release | 2016-07-11 | |

Pages | 880 | |

Download Link | Click Here |

An accessible introduction to probability, stochastic processes, and statistics for computer science and engineering applications This updated and revised edition of the popular classic relates fundamental concepts in probability and statistics to the computer sciences and engineering. The author uses Markov chains and other statistical tools to illustrate processes in reliability of computer systems and networks, fault tolerance, and performance. This edition features an entirely new section on stochastic Petri nets—as well as new sections on system availability modeling, wireless system modeling, numerical solution techniques for Markov chains, and software reliability modeling, among other subjects. Extensive revisions take new developments in solution techniques and applications into account and bring this work totally up to date. It includes more than 200 worked examples and self-study exercises for each section. Probability and Statistics with Reliability, Queuing and Computer Science Applications, Second Edition offers a comprehensive introduction to probability, stochastic processes, and statistics for students of computer science, electrical and computer engineering, and applied mathematics. Its wealth of practical examples and up-to-date information makes it an excellent resource for practitioners as well. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department. |